Search results

Search for "antifungal properties" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • , metal-based nanoparticles (MNPs) are of particular interest for such applications as they exhibit impressive antibacterial and antifungal properties. Unlike antibiotics for example, that target cell wall synthesis, translational machinery and DNA replication inside bacteria cells [7], MNPs simply attack
  • to exhibit antifungal properties. Lastauskiené et al. [52] showed that formic acid can induce programmed cell death in several Candida species, including C. albicans pathogens. In vitro testing revealed MIC values of 1.22 mg/mL (26.5 mM) on C. albicans thus suggesting a mild but significant
PDF
Album
Full Research Paper
Published 12 Jan 2023

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • , and it is considered a potent candidate for modifying TiO2 by photodeposition or radiolytic reduction. The prepared material exhibited antibacterial and antifungal properties under UV, visible and solar irradiation, and even in darkness [85]. Intriguingly, an enhanced antimicrobial activity of TiO2
PDF
Album
Review
Published 14 Feb 2022

A review on the biological effects of nanomaterials on silkworm (Bombyx mori)

  • Sandra Senyo Fometu,
  • Guohua Wu,
  • Lin Ma and
  • Joan Shine Davids

Beilstein J. Nanotechnol. 2021, 12, 190–202, doi:10.3762/bjnano.12.15

Graphical Abstract
  • ), graphene oxide, silver nanoparticles (Ag NPs) [24][25][26], quantum dots, and superparamagnetic particles [27] have been reported to have antibacterial properties against Streptococcus mutans [28] and Xanthomonas perforans, antifungal properties against Fusarium oxysporum [27] and Fusarium graminearum [29
PDF
Album
Review
Published 12 Feb 2021

Antimicrobial metal-based nanoparticles: a review on their synthesis, types and antimicrobial action

  • Matías Guerrero Correa,
  • Fernanda B. Martínez,
  • Cristian Patiño Vidal,
  • Camilo Streitt,
  • Juan Escrig and
  • Carol Lopez de Dicastillo

Beilstein J. Nanotechnol. 2020, 11, 1450–1469, doi:10.3762/bjnano.11.129

Graphical Abstract
  • antibacterial activities against E. coli, P. aeruginosa, methicillin-sensitive and resistant S. aureus [117]. Suganya et al. (2018) developed a potent antifungal nanocomposite with NiO NPs against the Aspergillus niger strain. The authors attributed the excellent antifungal properties to the physical process
PDF
Album
Review
Published 25 Sep 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • generate metallic nanoparticles embedded in the shell. Such structures have been demonstrated to reveal antibacterial and antifungal properties. For example, Zhao et al. prepared micrometer-sized hybrid particles in a multi-step preparation involving the sulfonation of polystyrene beads and the
PDF
Album
Full Research Paper
Published 14 Apr 2020

Noble metal-modified titania with visible-light activity for the decomposition of microorganisms

  • Maya Endo,
  • Zhishun Wei,
  • Kunlei Wang,
  • Baris Karabiyik,
  • Kenta Yoshiiri,
  • Paulina Rokicka,
  • Bunsho Ohtani,
  • Agata Markowska-Szczupak and
  • Ewa Kowalska

Beilstein J. Nanotechnol. 2018, 9, 829–841, doi:10.3762/bjnano.9.77

Graphical Abstract
  • found that silver-modified titania showed superior antibacterial activity, whereas gold-modified samples were very active against fungi, suggesting that bimetallic photocatalysts containing both gold and silver should exhibit excellent antimicrobial properties. Keywords: antifungal properties
  • promote new ones. Moreover, fungi as more complex microorganisms than bacteria and viruses are much more resistant to antimicrobial agents. Therefore, there is a great need to develop new efficient antifungal materials. Regarding this, the antifungal properties of plasmonic photocatalysts have been tested
  • may be considered as positive results indicating a high stability of photocatalysts. However, it should be concluded that the antifungal properties of silver-modified titania are not attractive for commercial application. Moreover, the small inhibition zones around discs were difficult to evaluate
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2018

Electron interaction with copper(II) carboxylate compounds

  • Michal Lacko,
  • Peter Papp,
  • Iwona B. Szymańska,
  • Edward Szłyk and
  • Štefan Matejčík

Beilstein J. Nanotechnol. 2018, 9, 384–398, doi:10.3762/bjnano.9.38

Graphical Abstract
  • medical applications because copper exhibits antibacterial and antifungal properties [28]. In FEBID experiments, the deposited Cu–C lines and squares, obtained from the fluorinated copper(II) β-diketonate [Cu(hfac)2], had an atomic ratio of approximately Cu/C/O/F = 10:64:25:1. In materials obtained using
PDF
Album
Full Research Paper
Published 01 Feb 2018

Photothermal effect of gold nanostar patterns inkjet-printed on coated paper substrates with different permeability

  • Mykola Borzenkov,
  • Anni Määttänen,
  • Petri Ihalainen,
  • Maddalena Collini,
  • Elisa Cabrini,
  • Giacomo Dacarro,
  • Piersandro Pallavicini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2016, 7, 1480–1485, doi:10.3762/bjnano.7.140

Graphical Abstract
  • , and our future study will be focused on studying antibacterial and antifungal properties of these surfaces, and on the NIR-triggered release of drugs bound to printed gold surface as an additional and valuable effect. AFM topographical images (10 µm ×10 µm) of paper substrates with (left side) and
PDF
Album
Supp Info
Letter
Published 19 Oct 2016

Paper modified with ZnO nanorods – antimicrobial studies

  • Mayuree Jaisai,
  • Sunandan Baruah and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2012, 3, 684–691, doi:10.3762/bjnano.3.78

Graphical Abstract
  • and H2O2 are harmful to the cells of living organisms and are the major contributors to antibacterial activity [11][12][13]. ZnO nanoparticles are reported to have significant antifungal properties against B. cinerea and P. expansum, and the inhibitory effects were found to increase with an increase
  • in the concentration of the nanoparticles [14]. Other metal oxides, such as iron oxide, also exhibit antibacterial and antifungal properties, as have been reported by Prucek et al. [15]. In a photocatalysis process, electron–hole pairs are generated through photonic excitation of wide-band-gap metal
PDF
Album
Full Research Paper
Published 11 Oct 2012
Other Beilstein-Institut Open Science Activities